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Abstract. Over a decade I and a number of other software engineers 
introduced, developed, improved and expanded the principle of interpretation 
for data acquisition and control task descriptions; initially a simple description 
and execution tool to assist plant engineers; in the end a software development 
framework for modeling, managing and executing large, complex projects in 
this domain.  
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1   Introduction 

On the first data acquisition and control system in 1969 for the Danish power plant 

Vestkraft Blok2 (Fig. 1, Appendix 1, [1][3]), we simply wanted to create a tool 

(simple process language) to make it easier and more flexible for plant engineers to 

define their measurements and calculations, and thus do away with the limited and 

predetermined (“hard coded”) operations on process data based on flags in data tables. 
At the completion of the process control system in 1978 for the Copenhagen Mail 

Sorting Center, the principle of using interpretation on a data-model of the system 

(Fig. 3, Appendix 2, [4][5]) had evolved into a software engineering framework that 

influenced not only the system architecture, but all phases of software development 

from detailed requirements, design, coding, testing, and release staging, to project 

management, estimation, planning, scheduling, configuration management, quality 

procedures, and documentation. 



 
 

Fig. 1. The power plants at Vestkraft. Blok2 is the left tower. See Appendix 1 for details. 

2   The early data acquisition systems 

In the beginning of the 60’s the use of computers started to spread from pure 

mathematical applications to the process control industry. Both buyers and suppliers, 

however, were very cautious about letting the computer take full control of the 

industrial processes. Acquisition of analog signals and their conversion to binary 

numbers was not very well known, and disturbances from the electrically noisy 

environment of high-power machinery could severely influence the low-level signals 

at maximum values of 24 mA and 10 V. Consequently the first computer systems 

were only used for logging measurement data; performing simple conversions and 

calculations; and present the operators of the plant with alarms and reports. 

These data loggers were programmed like the hard-wired electronic instruments 
they were intended to supplement. The early programs were sequential monolithic 

structures that scanned the data acquisition channels and stored them in memory 

resident tables after conversion and simple alarm checks. Other programs would later 

read these tables, perform calculations and generate reports. Around the mid 60’s the 

first multiprogramming monitors appeared which allowed programs to execute in 

parallel, e.g. data acquisition programs could execute in parallel with report printing 

programs. The structure of the programs did not change very much, however. They 

still retained their basic monolithic structure. There were just more of them; now 

executing in parallel. 



3   The original idea of a dedicated process control language 

In these early systems, in order to describe the processing to take place on the data, a 

number of flags (bits) were kept for each measurement variables along with its status 

and value. They defined what conversion routine to use, whether alarm limits should 

be checked, or what other calculations should be performed. When a data processing 

program scanned the data tables it examined the flags individually (in a specific 

sequence) and called the relevant routine (basically a huge case structure).  
Therefore the plant engineer who designed the actual processing had the difficult 

task of defining the data tables and processing flags; and he had to do it in the 

computer’s native machine code. Because of the limited amount of predefined flags 

and the fixed sequence in which they were scanned, it was often difficult to describe 

the processing that was desired. 

We wanted to improve this situation by developing a data acquisition and control 

language closer to the concepts of a plant engineer, to gain flexibility by replacing the 

flags and fixed sequence of processing and allow the engineer to select the processing 

from a range of language commands. The introduction of such a process language 

was not new. Other dedicated data acquisition and control languages were developed 

for similar systems at that time. However, the trend was to compile such languages 

into (monolithic) executable programs. 

4   The introduction of the interpretation principle 

We could not allow ourselves the luxury of compiler for the language because our 
development system was the same as the executing system, and therefore had severe 

limitations on memory, backing store and peripherals. Furthermore, at that time 

compiled code was known to lack the necessary performance for real-time 

applications. We therefore decided to define the language in a macro-like format, 

which could be easily translated into command data-structures.  

We made the command data-structures self-contained, e.g. the reference to the 

software routine to execute the macro-command and the parameters were stored 

together. Since each routine was designed for the specific purpose of handling its 

parameters, the length of each command data-structure could also be calculated and 

stored in the structure.  

Because we did not have a file handling system either, we had to organize the lay-

out of command data-structures and data variables on the backing store ourselves. At 
specific places the translator would insert special commands to load the next segment 

of command data-structures from backing store to memory, and commands to swap 

segments of variables that had been updated with others which would be needed next.  

At predefined intervals, a simple program (interpreter) executing in one of the 

multiprogramming processes scanned the model containing the command data-

structures. It would subroutine-jump to the routine referenced in the first command 

data-structure. When that routine returned, the interpreter added the stored length of 

the command data-structure (parameters) to point to the beginning of the next 

command data-structure, call that routine and so on, until an end-of-data-structure 



command was encountered. This way data processing was no longer contained in a 

monolithic program; it had turned into an extremely flexible set of small dedicated 

routines in a data-model that was interpreted rather than executed.   

Several routines (macro-language commands) would normally have to be called to 

accomplish one complete processing of a plant variable (Fig. 2), but the type of 

checks, conversions, calculations, and the order in which they were performed, was 

no longer limited or predefined by the real-time processing program.  

 

 

Fig. 2. Processing commands for a temperature variable at Vestkraft Blok2. 

5   New opportunities because of the interpretation principle 

Having one central data-model, which is interpreted rather than executed, opened up 

for a number of advantages in the development and customization of data acquisition 

and control systems. New language commands could be easily defined; a small 
dedicated component (routine and parameter description) designed, coded and added 

to the macro-translator. Nothing needed to be changed in the on-line system’s 

processes (programs); the data-model was simply replaced.  

Defects were easier to locate because they were confined to the new component (or 

the macro-translator), as there was no direct communication (e.g. calls) between 

routines, only through the data values and their status.  

6   Testing in a simulated environment 

The principle of interpretation allowed us to test new components in a simulated 

environment (e.g. off-line) using only those parts of the data-model that were needed 

for testing the component. Dedicated test drivers and stubs (simple test commands 

included in the macro-language) were inserted in the test data-model to check whether 

the new routine produced the correct (expected) results under different conditions of 

input data.  For each call the drivers and stubs stepped through a list of test inputs 

(test cases).  

A logging facility was inserted (another test component in the data-model) that 
could print the data values and status used by the component (routine) along with the 

; Create new value for TFd and add to sum in TFdS10 

/802   ; TFd, steam temperature for HT 

 :IWR, K=802  ; Initialize working registers (variable 802) 

 :LSV, V802  ; Load state and value for TFd (variable 802) 

 :ECAV, R1T25  ; Evaluation control of analog value (range, terminal) 

   L1   ; skip conversion and checks if compensated by operator 

   L2   ; Skip conversion in case of a measurement failure 

 :CRE, K=150  ; Convert resistance element (parameter value) 

 :ILCMM, K=-200,Pih=6000 ; Instrument limit control (min, max) 

2:TPC, V802  ; Test for failures and update status (TFd) 

 :TCCV, V219  ; If compensation use value for TOH (variable 219) 

1:PCM, K=-50, Pah=5650  ; Plant status control (hysteresis, maximum) 

 :SSV, V802  ; Store new state and value (TFd) 

 :SUM, V3301  ; add to TFdS10 (variable 3301) 

  



result data and new status it generated (stored). From this, it was only a small step to 

include expected results in the test lists and let the logging facility mark any incorrect 

results in the print. Automated regression testing in a simulated environment had now 

been introduced as a natural thing.  

Even late in the 70’s software programmers were scarce and usually we had to 

teach them everything: assembler language, linkers, loaders, bootstrapping, running 

the system, and of course basic software engineering good practices (it wasn’t called 

that at the time). Using the principle of interpretation and simulated test environments 
made the introduction of rather primitively trained developers on a project much 

easier and safe. They were able to find and correct their errors early during unit tests 

in the coding phase, and quickly became seasoned developers on-the-job.   

Testing in a simulated environment also meant that we were able to implement a 

defined process for promoting partially completed systems through several levels of 

environments (unit testing, system testing, and production) complete with automatic 

regression test data and test procedures. 

7   Effects on the software architecture 

The principle of interpretation of a data-model influenced all aspects of our software 

development. The most immediate effect was of course on the software architecture; 

based as it were on a comprehensive model of the industrial plant, and an easily 

adaptable and flexible set of software components.  

All data values and their status were fetched, updated, and stored in the model. All 

connections and communication between the modeled physical components of the 
plant took place through their representations in the model. All other types of 

handling and control were also designed into the model and represented as “abstract” 

components, e.g. conversions, averages, accumulations, calculations, progress timing, 

storage management, plant sub systems (groups), as well as “physical” output devices 

and set-point controls.  

Alarms, reports, logs, and other output data about the operation of the plant were 

generated from data in the model and communicated via a number of message buffer 

queues to dedicated reporting processes running in parallel to the acquisition and 

control process, so that processing and output tasks could perform independently of 

each other [2].  

Input to and output from the message buffer queues were protected by semaphores, 

and buffer overruns were handled so they did not influence the operation of the 
acquisition and control process. The principle of interpretation was also used to 

describe the layout, contents and generation of reports. 

8   Effects on project management 

Project planning, scheduling and management were impacted by the data-model 

architecture. Because of the limited complexity of each component, it was easy to 

estimate how long it would take to implement it, and actual data from previously 



developed components quickly created a solid basis for new estimates. Each 

component could be developed and tested almost independently of other components, 

so it was relatively easy to assign components to the available developers in the 

project plan and perform follow-up on development progress.  

However, this did not eliminate the need for overall design of the system of 

components. That always involved senior developers. It sometimes turned out to be a 

bottle-neck and generate overruns on its estimates.  

In the end we managed to deliver our projects almost on time and budget, and with 
very few defects in operation.  

9   The applications of the interpretation principle 

The interpretation principle and data acquisition and control language commands 
from Vestkraft Blok2 were reused and improved for another power plant (Nordkraft 

Sektion4) and adapted for a sugar production plant (Saxkjøbing Sukkerfabrik).  

However, the comprehensive software engineering framework described above 

was not realized until the Copenhagen Mail Sorting Center (Fig. 3). In this system all 

physical components of the plant were modeled as components in the data-model.  

 

 

 

Fig. 3. The Copenhagen Mail Sorting Center. See Appendix 2 for details of the modeling. 



10   Why the principle didn’t catch on 

The advent of new computer and software technology in the late 70’s and early 80’s 

meant a complete change in data acquisition and control systems from comprehensive 

centralized systems to a network of small dedicated minicomputers, microprocessors 

(PLCs), which required less complex software systems.  

Secondly, the response time of a system interpreting a data-model is never faster 

than the time it takes to scan the data-model. This works for most industrial processes 
which only change slowly. However, direct control loops (PID) and other fast 

reactions to input must be handled by separate processes executing in parallel. As 

prices on computers went down, and hardwired instrumentation went up, the trend 

was to use computers to engage faster and more directly with the control of the 

industrial plant. 

11   A final twist in the tale 

In the late 80’s I was product manager for a new line of automatic test equipment at 

Brüel & Kjær. Our goal was to develop a set of virtual (e.g. software-based) 

measuring instruments. On top of those we wanted to develop a comprehensive test 

and measurement environment, where engineers could develop their own test and 

measurement projects, combining the instruments of their choice with calculations, 

sequencing, loops and controls. Numerical results and graphs were to be combined 

into reports that showed whether the product under test has passed or failed. 

We had many heated discussions on how to design this test and measurement 
environment. There was a clear divide between the experienced test and measurement 

engineers and the brilliant software engineers, some just out of the university. For my 

part, I was impressed with the advances in computer speed, compiler capabilities; and 

object-oriented development seemed to become an important principle for the future. 

Therefore we decided to base the test and measurement environment on compilation 

of our measurement components rather than interpretation. 

We struggled several years to make this design work, but did not succeed. In the 

end the project was cancelled. A couple of years later a US company (National 

Instruments) launched a since then rather successful test and measurement 

environment based on interpretation of simple measurement, calculation and control 

components, which could be combined graphically (2D) in an easy drag, drop and 

connect fashion. These simple test and measurement components resemble the 
language commands we had used in the early days for the industrial plants, albeit in a 

more modern, colorful and graphic way.  

The lack of speed in interpretation, that we had feared so much, was not a problem 

for test and measurement engineers, partly because of the increased speed of 

computers and partly because many test and measurement processes change at a slow 

rate.  

In hindsight this example shows that, given the right conditions, the interpretation 

principle can still be the right way to solve a complex problem. And by the way, 



Microsoft Excel is actually another case of a successful use of the interpretation 

principle. 
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Appendix 1: The Vestkraft Blok2 Power Plant  

The power plant was built in 1969 (Fig. 1, Fig. 4). It had an electric capacity of 250 

MW, plus a heating capacity of 160 Gcal/h that covered the needs of Esbjerg city. The 

turbo-group was delivered by BBC and the boiler unit by Babcock & Wilcox. All of 
the plant controls were handled by conventional electronic equipment. For the 

complete supervision of the plant a digital computer system from A/S Regnecentralen 

was installed [1][3]. 



 

Fig. 4. A view into Vestkraft Blok2. A combination of two original drawings, matched to fit the 
correct proportions of the plant. The boiler section with its heating supply units to the left, and 
the turbine section to the right. 

Every 10 seconds, all bearing and coil temperatures from major motors, pumps and 
generators were measured and analyzed by the computer. Special supervision of 

boiler drum, oil burners and air pre-heaters was also performed.  Approximately 250 

analogue measurements.  

Every minute, another 250 analogue values were measured and analyzed; among 

others 170 super-heater pipe temperatures. The latter were particularly important 

because close supervision of these could increase maintenance intervals and prevent 

break-downs. All relevant measurements were accumulated over time. Performance 

and load calculations were performed and used to improve the management and 

performance of the plant. 

The RC4000 computer configuration was: 32kB memory, 512kB drum storage, 

512 analogue inputs, 216 digital sense inputs, 48 digital interrupt inputs (for 
counting), and 48 digital outputs. 

Appendix 2: Modeling of the Copenhagen Mail Sorting Center  

The software system for the Copenhagen Mail Sorting Center (Fig. 3, [4][5]) was 
developed from 1974-1978. The center was designed to handle 130.000 parcels and 3 

million letters per day arriving and departing on trucks or trains following a strict 

schedule. The main contractor was Boy Transportmateriel A/S. 



The center comprised approximately 1000 conveyor belts, which if started or 

stopped at the same time (especially when loaded with mail bags or parcels) would 

have a severe impact on the power lines supplying the building. Therefore each 

conveyor belt was modeled as a component in the data-model of the software system 

with two flags indicating its ability to receive and deliver mail respectively.  

When mail is delivered at the receiving end of a belt, its predecessor component 

turns its able-to-deliver true, and the belt component then issues a start command (bit) 

to its belt’s motor. While the motor is running the component calculates when mail 
will reach the other end of the belt, at which point it raises its able-to-deliver flag. 

This is detected by the succeeding component, which then starts. In case the 

succeeding component is not able to receive mail (its able-to-receive flag is false) the 

belt motor will be commanded to stop.  

The same happens when mail is no longer delivered from the belt’s predecessor (its 

able-to-deliver flag turns false). The component will allow the belt to continue to run 

until a calculation determines that the belt is empty. Then the belt motor is 

commanded to stop and the component’s ability-to-deliver flag is set to false. The 

effect propagates down the line of conveyor belt components (Fig.5). 

 

 
 

Fig. 5. Details of conveyor belt connections. 

When a belt is intended for storage, the predecessor component is a photo cell 

component at the start of the belt, rather than another belt component. The photo cell, 
however, is modeled with similar flags, and the storage belt only moves as long as the 

photo cell component has its able-to-deliver flag true, e.g. while mail is blocking the 

view of the photo cell. This way mail is compacted on the belt. When mail reaches the 

other end of the storage belt (usually controlled by a photo cell component at the end 

of the belt now signaling able-to-receive false), the storage belt will indicate able-to-

receive false to its predecessor (the photo cell component at the start of the belt). This 

not-able-to-receive flag is reflected to its predecessor (the component delivering mail 

to the storage belt). A storage management component will then choose another 

parallel storage belt to receive further mail. When emptying a storage belt, the belt 

component will act as a normal transporting belt, but it will still keep the able-to-

receive flag false, so that no new mail will be received until the belt has emptied 
completely. 

Thus the use of these “able-to” flags can control the progress of mail throughout 

the mail center irrespective of the type of equipment modeled, and only keep those 

conveyor belts running, that are in use. The “able-to” flags are the only way in which 



the modeled components communicate, and the flags are investigated at each cycle 

through the data-model. 

The center was controlled by 5 duplex hot stand-by computer systems for each 

section of the mail sorting process, a number of microprocessors, and a supervisory 

computer for the operators connected via asynchronous communication lines. The 

control computers were Control Data (CDC) Cyber 18-17 with 32-88kB memory, a 

memory-to-memory high-speed bus, and no backing stores. 
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